

CONTENT

BIOSCIENCE

SECTION I - BIOLOGY

BIOCHEMISTRY

1. Structure of Atoms, Molecules, Bonds, Interactions.....	1
2. Acid, PH, Buffer & Solutions.....	3
3. Thermodynamics.....	5
4. Amino Acids.....	8
5. Proteins.....	11
6. Carbohydrates & Glycobiology.....	14
7. Lipids.....	18
8. Nucleotides & Nucleic Acids.....	20
9. Enzymes.....	23
10. Metabolism.....	29
11. Vitamins.....	40

CELL BIOLOGY

1. Prokaryotic, Archaea & Eukaryotic Cell Structure.....	42
2. Biological Membranes / Plasma Membrane.....	43
3. Membrane Transport.....	45
4. Protein Sorting.....	47
5. Cell Organelles.....	50
6. Genome Organization.....	53
7. Cell Walls –Plant, Animal & Fungi.....	55
8. The Cytoskeleton & Cell Movement.....	57
9. The Cell Cycle.....	61
10. Mitosis & Meiosis.....	66

MOLECULAR BIOLOGY

1. Replication.....	67
2. DNA Damage & Repair.....	74
3. Transcription & RNA Splicing.....	75
4. Translation.....	77
5. The Genetic Code.....	82
6. LAC, TRP Operon.....	84

7. Regulatory RNAs.....	87
8. Gene Regulation.....	89

CELL SIGNALING

1. Cell Signaling.....	90
2. Cell-Cell & Cell -Matrix Interactions.....	95
3. Cancer.....	96

IMMUNOLOGY

1. Innate Immunity.....	97
2. Cell & Organs of Immune System.....	98
3. Antigens.....	99
4. Antibodies.....	100
5. Antigen –Antibody Interaction.....	103
6. VDJ Recombination.....	105
7. Hybridoma Technology.....	106
8. MHC.....	107
9. Adaptive Immunity.....	108
10. Immunity to Microbes.....	109
11. Autoimmunity, Transplantation Immunology, Hypersensitivity Disorders, Congenital & Acquired Immunodeficiencies.....	110
12. Vaccine.....	113

DEVELOPMENTAL BIOLOGY

1. Developmental Biology.....	114
-------------------------------	-----

PLANT PHYSIOLOGY

1. Photosynthesis: The Light Reactions.....	115
2. Photosynthesis: C3, C2, C4 & Cam Cycle ..	119
3. Nitrogen Metabolism & Nitrogen Fixation.	121
4. Water Balance of Plants, Mineral Nutrition & Solute Transport.....	124
5. Stomatal Biology.....	126
6. Plant Hormones.....	127

7.	Double Fertilization, Fruit, Seeds, Seed Dormancy Germination Embryogenesis, Seeding Establishment,.....	129
8.	Stress Physiology.....	131

ANIMAL PHYSIOLOGY

1.	General Physiology.....	132
2.	Muscle & Bones.	134
3.	Circulatory System.	135
4.	Respiration System.....	140
5.	Kidney & Filtration.	141
6.	Brain & Neurophysiology.	142
7.	Gastrointestinal Physiology.....	144
8.	Endocrinology & Reproduction.....	146

TAXONOMY

1.	Principles of Taxonomy & Nomenclature..	152
2.	Classical & Quantitative Methods of Taxonomy.....	153
3.	Monera, Protista, Algae, Fungi Plant Classification.	154
4.	Animal Classification.	155
5.	Diversity of Life Forms.....	157

GENETICS

1.	Mendelian Genetics.	158
2.	Multiple Alleles.	163
3.	Gene Interaction.	164
4.	Extrachromosomal Inheritance.....	165
5.	Human Genetic Disorders.	166
6.	Sex Linked Inheritance.	168
7.	Molecular Markers.....	169
8.	Linkage.	170
9.	Transformation, Conjugation, Transduction & Mapping of Genes.	171
10.	Point Mutations, Gross Mutation and Transposable Elements.	173

ECOLOGY

1.	Population Ecology.....	175
2.	Ecological Succession.	177

3.	Ecosystem: Structure & Function.	178
4.	Species Interactions & Competition.	180

EVOLUTION

1.	The Origin & Early Evolution of Life.....	181
2.	Genetic Drift, Hardy & Weinberg Equation, Population Genetics.	184
3.	Speciation: Allopatricity & Sympatricity.	187
4.	Convergent Evolution/Divergent Evolution.	188
5.	Sexual Selection & Co-Evolution, Brain, Behavior & Evolution.	190

MICROBIOLOGY

1.	Viruses & Other Acellular Agents (Prions, Viroids & Virusoid) & Viral Infection.....	191
2.	The Microbes.	193
3.	Morphology & Physiology of Microorganisms Gram Staining & Other Staining Methods.....	195
4.	Microbial Nutrition.	199
5.	Microbial Growth.....	201
6.	Microbes & Disease.	205
7.	Plasmid.....	211
8.	Plaque Assay & MOI.....	212
9.	Sterilization Control of Microorganisms....	213
10.	Antibiotics.	214
11.	Fermentation.	216
12.	Applied Microbiology & Industrial Microbiology.	217

TECHNIQUES

1.	Animal Tissue Culture.	220
2.	Plant Tissue Culture.	221
3.	Microscopy.....	222
4.	Techniques of Molecular Biology, Bioinformatics & Basic Techniques.....	224
5.	Recombinant DNA & Genetic Analysis.....	228
6.	Immunochemical Techniques.	235
7.	Protein/Enzyme Structure, Purification, Characterization & Function Analysis.	236

8.	Protein/DNA Sequencing.....	238
9.	Mass Spectrometric & Spectroscopic Techniques.....	240
10.	Electrophoretic Techniques.....	244
11.	Chromatographic Techniques.....	249
12.	Radioisotope Techniques.....	250
13.	Drug Discovery & Development.....	251
14.	Biostatistics.....	252

SECTION II - C H E M I S T R Y

1.	Fundamental of Physical Chemistry.....	253
2.	Chemistry of Gaseous State.....	255
3.	Chemical Thermodynamics.....	256
4.	Electrochemistry.....	260
5.	Chemical Kinetics.....	263
6.	Nuclear Chemistry.....	267
7.	Photochemistry.....	268
8.	Analytical & Environmental Chemistry.....	269
9.	Atomic Structure & Fundamental of Inorganic Chemistry.....	270
10.	Chemical Periodicity.....	272
11.	Chemical Bonding & Theories of Bonding.....	274
12.	Chemistry of Main Group Elements.....	277
13.	Chemistry of Transition Elements & Coordination Chemistry.....	280
14.	Organometallic Chemistry.....	285
15.	Chemistry of Inner Transition Elements.....	286
16.	Bioinorganic Chemistry.....	287
17.	General Organic Chemistry & Aromaticity.....	288
18.	Stereochemistry.....	292
19.	Reaction Intermediates, Mechanism & Named Reactions.....	296
20.	Organic Reagents.....	302
21.	Organic Spectroscopy.....	306
22.	Polymer Chemistry, Biochemistry & Chemistry of Natural Products.....	312

SECTION III - P H Y S I C S

1.	Unit & Measurements.....	314
2.	Kinematics.....	317
3.	Laws of Motion.....	320

4.	Work Power Energy.....	322
5.	Rotational Dynamics.....	325
6.	Gravitation.....	327
7.	Solid State & Mechanical Properties of Solids & Fluids.....	329
8.	Thermodynamics & Ktg.....	331
9.	Waves & Oscillations.....	336
10.	Electrostatics & Electricity.....	338
11.	Magnetostatics & Electromagnetic Induction.....	343
12.	EM Waves.....	347
13.	Ray Optics & Wave Optics.....	349
14.	Dual Nature of Radiation, Matter & Atom Nuclei.....	354
15.	Electronics & Principle of Communications.....	360
16.	Quantum Mechanics.....	366

SECTION IV - M A T H E M A T I C S

1.	Sets, Relations And Functions.....	367
2.	Limit.....	371
3.	Continuity.....	373
4.	Differentiation.....	374
5.	Integration.....	377
6.	Differential Equation.....	380
7.	Sequence & Series.....	383
8.	Complex Analysis.....	385
9.	Probability.....	387
10.	Binomial Theorem.....	390
11.	Trigonometry.....	392
12.	Algebra (Linear + Abstract).....	395
13.	Permutation & Combination.....	399
14.	Vector Algebra.....	400
15.	Geometry.....	402
16.	Theory of Equations.....	408
17.	General Aptitude.....	410
18.	Statistics.....	411
19.	L L P.....	413
20.	Advanced Calculus.....	414

SECTION – I

BIOLOGY

BIOCHEMISTRY: NUMBER OF QUESTIONS ASKED IN IIT JAM EXAM (2005 to 2023)

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
1 Structure of Atoms, molecules, bonds and interactions	-	-	-	-	-	-	-	-	2	-	1	-	-	-	-	-	2	-	
2 Acid, pH, Buffer and Solution	-	-	-	-	-	1	1	-	1	1	-	1	-	-	-	2	-	-	
3 Thermodynamics	-	-	2	1	1	1	-	1	2	-	-	-	-	-	-	1	-	-	
4 Amino acids	1	3	1	1	2	-	1	1	-	-	1	-	1	-	-	-	-	1	
5 Proteins	1	-	-	1	1	-	-	-	3	-	1	-	1	2	-	1	-	-	
6 Carbohydrates and Glycobiology	1	2	1	2	2	-	2	1	-	-	-	-	-	1	1	1	1	-	
7 Lipids	1	-	1	-	1	1	-	1	1	-	1	-	-	-	1	-	-	-	
8 Nucleotides and Nucleic acids	1	-	-	1	-	-	1	-	3	-	1	-	1	-	1	1	1	-	
9 Enzymes	3	1	2	1	1	-	2	2	4	3	1	3	2	1	1	-	1	-	
10 Metabolism	3	3	5	4	4	2	5	1	2	3	-	1	3	2	2	2	3	-	
11 Vitamins	1	1	1	-	1	1	-	1	-	-	1	-	-	1	-	1	-	-	

$$\text{Volume of water (in } m^3) = \text{Volume of water (in } nm^3) \\ \times (1 \times 10^{-9})^3 = [(4/3) \times \pi \times (1 nm)^3] \times 0.2 \times \\ (1 \times 10^{-9})^3$$

Now, let's calculate the mass of the water present in the protein.

$$\text{Mass of water} = \text{Volume of water (in } m^3) \times \text{Density} \\ \text{of water} = [(4/3) \times \pi \times (1 nm)^3] \times 0.2 \times \\ (1 \times 10^{-9})^3 \times 1000 \text{ kg/m}^3$$

Now, let's convert the mass of water to the number of water molecules.

Mass of water (in grams)

$$= \text{Mass of water (in kg)} \times 1000 \\ = [(4/3) \times \pi \times (1 nm)^3] \times 0.2 \\ \times (1 \times 10^{-9})^3 \times 1000 \\ \times 1000 \text{ grams}$$

$$\text{Number of water molecules} = \text{Mass of water (in grams)} / (\text{Molar mass of water} \times \text{Avogadro's number}) \\ = [(4/3) \times \pi \times (1 nm)^3] \times 0.2 \times \\ (1 \times 10^{-9})^3 \times 1000 \times 1000 \text{ grams} / (18 \text{ grams/mole} \times 6 \times 10^{23})$$

Therefore, the number of water molecules present in the protein is closest to (4) 28.

3. Explanation- Option 1 is correct because hydrogen bond is an ionic interaction. We know that ionic interactions are weak in polar solvent which has high dielectric constant.

Option 3 is correct because the strength of hydrogen bond is inversely proportional to the dielectric constant. The strength of hydrogen bond is low in water compared to organic solvents because water has higher dielectric constant than organic solvents.

4. Explanation-

- 1) This option is not correct because in unimolecular nucleophilic substitution reaction carbocation is formed.
- 2) This option is correct because during replacement of ligand starts in a chiral centre is needed to occur an inversion of configuration.
- 3) This option is correct because $sN2$ reaction is favourable in polar aprotic solvents like acetone, DMSO, acetonitrile etc.
- 4) This option is incorrect because the reaction intermediate in a bimolecular nucleophilic substitution reaction is tetrahedral, not trigonal bipyramidal.

5. Explanation - The maximum number of hydrogen bonds is 4 in a water molecule in a liquid state because it has two hydrogen bond donor and two hydrogen bond acceptor.

Moles of acetate formed = 5 mmol
 Total volume = 50mL + 50mL = 100mL
 $[\text{Acetate}] = 5 \text{ mmol} / 100\text{mL} = 0.05\text{M}$
 $\text{pH} = 14 - \text{pKa} - \log([\text{Acetate}])$
 $\text{pH} = 14 - 4.8 - \log(0.05)$
 $\text{pH} = 10.5$ which is closest to 9.0

4. Explanation:-

$\text{pKa}_1 = 4.19$
 $\text{pKa}_2 = 5.57$
 $[\text{HA}_2^-] = 0.1\text{M}$
 $[\text{HA}] = 0.1\text{M} - 0.1\text{M} = 0$
 $\text{pH} = \text{pKa}_2 + \log([\text{A}_2^-] / [\text{HA}])$
 $\text{pH} = 5.57 + \log(0.1 / 0)$
 $\text{pH} = 5.57$

The pH of the solution is 5.57. However, this is the pH of the solution after the first dissociation of monosodium succinate. The second dissociation of monosodium succinate will also contribute to the pH of the solution, so the pH will be slightly lower than 5.57.

The exact pH of the solution will depend on the relative concentrations of the first and second dissociated forms of monosodium succinate.

$\text{pKa}_2 = 5.57$
 $[\text{A}_2^-] = 0.1\text{M}$
 $[\text{HA}] = 0.1\text{M} - 0.01 = 0.09$
 $\text{pH} = \text{pKa}_2 + \log([\text{A}_2^-] / [\text{HA}])$
 $\text{pH} = 5.57 + \log(0.1 / 0.09)$
 $\text{pH} = 4.88$

5. Explanation:-

To determine the pH of the acetic acid solution, we can use the equation relating pH and the concentration of hydrogen ions ($[\text{H}^+]$):

$$\text{pH} = -\log[\text{H}^+]$$

Given that the $[\text{H}^+]$ of the 0.1 N (normal) acetic acid solution is $1.33 \times 10^{-3} \text{ M}$, we can substitute this value into the equation:

$$\text{pH} = -\log(1.33 \times 10^{-3})$$

Using a calculator, we find:

$$\text{pH} \approx 2.88$$

Therefore, the pH of the 0.1 N acetic acid solution is approximately 2.88.

6. Explanation:-

The molar concentration of water in pure water can be calculated using the fact that water has a density of 1 g/cm^3 , which is equivalent to 1000 kg/m^3 . The

molar mass of water (H_2O) is approximately 18.015 g/mol .

The molar concentration (C) can be calculated using the formula:

$$C = \text{density} / \text{molar mass}$$

Substituting the values, we have:

$$C = 1000 \text{ kg/m}^3 / 18.015 \text{ g/mol}$$

Converting the units to match ($1 \text{ g} = 0.001 \text{ kg}$, $1 \text{ mol} = 6.022 \times 10^{23} \text{ molecules}$), we get:

$$C = (1000 \text{ kg/m}^3 / 18.015 \text{ g/mol}) \times (1 \text{ mol} / 1000 \text{ g}) \times (6.022 \times 10^{23} \text{ molecules} / 1 \text{ mol})$$

$$C \approx 55.56 \text{ mol/m}^3$$

Rounding off to one decimal place, the molar concentration of water in pure water is approximately 55.6 M .

7. Explanation:-

To calculate the molality of the resulting solution, we need to determine the number of moles of sucrose ($\text{C}_12\text{H}_{22}\text{O}_11$) and the mass of water.

The molar mass of sucrose ($\text{C}_12\text{H}_{22}\text{O}_11$) can be calculated as follows: $12(12.01 \text{ g/mol}) + 22(1.008 \text{ g/mol}) + 11(16.00 \text{ g/mol}) = 342.34 \text{ g/mol}$

Given that 1.45 g of sucrose is dissolved, we can calculate the number of moles of sucrose: moles of sucrose = mass of sucrose / molar mass of sucrose = $1.45 \text{ g} / 342.34 \text{ g/mol} \approx 0.00424 \text{ mol}$

The mass of water is given as 30.0 mL, which we need to convert to grams using the density of water (1 g/mL): mass of water = volume of water \times density of water = $30.0 \text{ mL} \times 1 \text{ g/mL} = 30.0 \text{ g}$

Now we can calculate the molality (m) of the solution: molality = moles of solute / mass of solvent (in kg) = $0.00424 \text{ mol} / (30.0 \text{ g} / 1000) = 0.1413 \text{ mol/kg}$

Rounding off to three decimal places, the molality of the resulting solution is approximately 0.141 m.

IIT JAM BT

PREVIOUS YEAR EXAM QUESTIONS

(IIT JAM BT - 2007)

- 8M urea solution became cold when it was prepared by dissolving an appropriate amount of urea in water at room temperature. This is because the dissolution of urea is
 - Exothermic and exergonic
 - Exothermic and endergonic
 - Endothermic and exergonic
 - Endothermic and endergonic

(IIT JAM BT - 2007)

- A zero order reaction is 50% complete in 30 minutes. The time (in minutes) from the start of the reaction required for 80% completion is

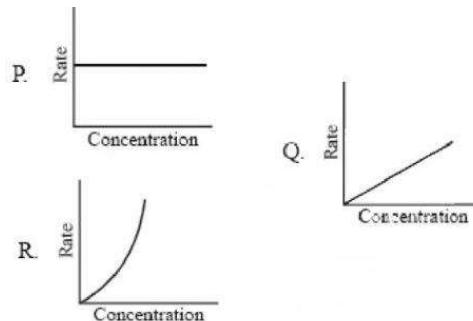
(1) 42	(2) 48
(3) 52	(4) 60

(IIT JAM BT - 2008)

- During a cyclic process, which one of the following is NOT always zero?
 - Enthalpy change
 - Entropy change
 - Internal energy change
 - Work done by the system

(IIT JAM BT - 2009)

- The reaction $\text{CaCO}_3(\text{s}) \rightleftharpoons \text{CaO}(\text{s}) + \text{CO}_2(\text{g})$ is not favored at 298K. Given that for this reaction at 298K, $\Delta_f H^0 = 200 \text{ kJ mol}^{-1}$ and $\Delta_f S^0 = 200 \text{ JK}^{-1} \text{ mol}^{-1}$, the lowest temperature at which this reaction will proceed in the forward direction is


(1) 801 K	(2) 901 K
(3) 1001 K	(4) 1101 K

(IIT JAM BT - 2010)

- Considering the equation $\Delta G^0 = \Delta H^0 - T\Delta S^0$ which one of the following statements is NOT CORRECT?
 - When ΔG^0 is negative, the reaction is exergonic
 - When ΔG^0 is negative, the reaction can occur spontaneously
 - When ΔS^0 is negative, the molecular disorder decreases during the reaction
 - When ΔH^0 is negative, the reaction is endothermic

(IIT JAM BT - 2011)

- The correct orders of the reactions deduced from the graphs given below, are

- P-First order, Q-Zero order, R-Half order
- P-Zero order, Q-First order, R-Second order
- P-Pseudo-first order, Q-Second order, R-Third order
- P-Second order, Q-First order, R-Zero order

(IIT JAM BT - 2013)

- For the Na^+ -mediated active transport of a molecule of glutamic acid from a concentration of 0.1mM outside the cell to 20 mM inside the cell, calculate the minimum number of Na^+ ions required to supply the necessary free energy. Use $T = 37^\circ\text{C}$, $\text{pH} = 7$, $\Delta\psi = -70\text{mV}$ and $F = 23062 \text{ cal/mol.V}$. ΔG released for the transport of one Na^+ is 3.3 kcal/mol. Glutamic acid carries a net charge of -1 at pH 7.

(1) 4	(2) 10
(3) 2	(4) 1

(IIT JAM BT - 2014)

- The zeroth law of thermodynamics
 - Gives a fundamental limitation of the efficiency of a heat engine
 - Deals with thermal equilibrium leading to the concept of temperature
 - Is a direct consequence of the general law of conservation of energy
 - Implies that the co-efficient of performance of a refrigerator can never be infinite.


(IIT JAM BT - 2014)***

- If the work done by a human heart is 0.5 J per beat, with the time period "T" of 0.8 seconds for a beat, the approximate energy (in kcal) required by a human heart to beat in a day is Assume: 1 calorie = 4.2 Joules

(1) 13	(2) 26
(3) 130	(4) 260

(IIT JAM BT - 2019)

10. Phosphoglucoisomerase catalyzes the following reaction:

If 0.05% of the original concentration of Glu-6-P remains at equilibrium, then the equilibrium constant of this reaction is _____.

(IIT JAM BT - 2021)

11. At 25°C and pH 7.0, the concentrations of glucose 1 phosphate and glucose 6-phosphate are (2)0 mM and 38 mM, respectively at equilibrium. The standard free energy change for the conversion of glucose 1-phosphate to glucose 6-phosphate is _____ J/mol. [R = 8.315 J mol⁻¹ K⁻¹]

Answer Key

1	2	3	4	5	6	7	8
3	2	4	3	4	2	3	2
9	10	11					
1	1999-1999	7295.3					

EXPLANATION

1. **Explanation:-** When urea dissolves in water, it absorbs heat from the surroundings, making the solution cold. This means that the dissolution of urea is endothermic. However, the dissolution of urea also releases free energy, making it exergonic. An endothermic reaction is a reaction that absorbs heat from the surroundings. An exergonic reaction is a reaction that releases free energy.

In the case of the dissolution of urea, the energy required to break the bonds in the urea molecules is greater than the energy released when the urea molecules interact with the water molecules. Therefore, the dissolution of urea is endothermic. However, the free energy released when the urea molecules interact with the water molecules is greater than the energy required to break the bonds in the urea molecules. Therefore, the dissolution of urea is exergonic.

The overall effect of the dissolution of urea is that heat is absorbed from the surroundings, making the solution cold.

2. **Explanation:-** In a zero-order reaction, the rate of reaction is independent of the concentration of the reactant. Given that the reaction is 50% complete in 30 minutes, it means that half of the reactant has been consumed in that time. To determine the time required for 80% completion, we can use the

concept that in a zero-order reaction, the time required for a certain percentage of completion is proportional to the initial concentration of the reactant.

The time required for 80% completion is given by: $t = (80/50) \times 30 \text{ minutes}$ $t = 1.6 \times 30 \text{ minutes}$ $t = 48 \text{ minutes}$

Therefore, the time required for 80% completion is (2) 48 minutes.

3. **Explanation:-** During a cyclic process, the system returns to its initial state. Therefore, the change in internal energy, enthalpy, and entropy are all zero. However, the work done by the system may not be zero. For example, if the system expands during part of the cycle, it will do work on the surroundings. This work will not be undone during the rest of the cycle, so the net work done by the system will not be zero. The other answer choices are incorrect because they are all zero during a cyclic process.

4. **Explanation:-** To determine the lowest temperature at which the reaction $\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g)$ will proceed in the forward direction, we can use the relationship between Gibbs free energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS):

$$\Delta G = \Delta H - T\Delta S$$

Given $\Delta H_0 = 200 \text{ kJ/mol}$ and $\Delta S_0 = 200 \text{ J/(mol}\cdot\text{K)}$, we want to find the lowest temperature (T) at which ΔG is negative ($\Delta G < 0$).

Substituting the values into the equation, we have:

$$\Delta G = \Delta H - T\Delta S_0 = 200 \text{ kJ/mol} - T(200 \text{ J/(mol}\cdot\text{K)})$$

Converting the units to match, we have: $0 = 200 \times 10^3 \text{ J/mol} - T(200 \text{ J/(mol}\cdot\text{K)})$

Simplifying the equation, we get:

$$T = (200 \times 10^3 \text{ J/mol}) / (200 \text{ J/(mol}\cdot\text{K)}) \\ = 1000 \text{ K}$$

Therefore, the lowest temperature at which this reaction will proceed in the forward direction is (3) 1001 K.

5. **Explanation:-** In the given equation $\Delta G_0 = \Delta H_0 - T\Delta S_0$:

A negative ΔG_0 indicates that the reaction is spontaneous and can occur spontaneously.

When ΔS_0 is negative, it means that the molecular disorder decreases during the reaction.

When ΔH_0 is negative, it indicates that the reaction releases heat and is exothermic, not endothermic.